EasyCARE ${ }^{\text {pus }}$
 PRESSURE REGULATORS

The EasyCARE ${ }^{\circledR}$ PLus two stage pressure regulators are suitable for direct mounting on oxygen and medical air cylinders. The structure is very compact and lightweight and they are particularly suitable for oxygen therapy. The body
 is made of brass and aluminium with an integrated calibrated orifices "dial" flowmeter having 10 preset medical gas flow options and it is housed inside a techno polymer shock proof shell to protect the assembly, while a large ergonomic control knob with Soft Grip inserts allows the operator to easily adjust the gas flow between the 10 possible preset options. They are equipped with a preset overpressure safety valve, and can be supplied, as an option, with a terminal unit connected to the first stage chamber which allows to get an additional and separate source of medical gas. The inlet connection is offered in several options, as per the different reference standards of the destination Countries. The outlet is through a nipple having two connection threads on the two ends for an easy and quick interchangeability. The operators can get two options of outlet thread by simply reversing the nipple, depending on the required applications.

The pressure calibration of the individual stages is fixed and a pressure gauge with easy reading colored sections allows to get view continuously of the cylinder gas level, up to minimum allowed. A protective silicone cover and a techno-polymer support prevent gauge damages caused by possible shocks received during transport or use. The gauge tilted position helps in reading even if the regulator is assembled on cylinders having small dimensions. The small size structure and the particular technical configuration allow the EasyCARE ${ }^{\circledR}$ PLus pressure regulators to supply flows of medical gases like oxygen with extreme accuracy, even in the most difficult conditions, such as in mobile units of emergency.
In fact, being the integrated flowmeter a calibrated orifices type, there is no need to get it always and only used in the upright position, as required in case of use of pressure regulators fitting conventional variable area flowmeters with vertical reading values scales.
Nipple with double thread, interchangeable by the end userManometer with easy reading colored sections to allow the continuous view of the cylinder gas level. Manometer fit in tilted position to help the gas level reading even if the regulator is assembled on cylinders having small dimensionsProtective silicone cover and techno-polymer supporBig size, with Soft Grip inserts for easy handling.

EasyCARE ${ }^{\text {Plus }}$

Sizes (LxWxH)	$57 \times 160 \times 130 \mathrm{~mm}$ (with UNI 11144 cylinder connection and without optional terminal unit)
Weight	0.750 Kg
Maximum gas supply pressure	200 bar
Pressure control gauge	315 bar end of scale
End of scale standard flow values	$6 \mathrm{~L} / \mathrm{min}$. $14 \mathrm{~L} / \mathrm{min}$. $15 \mathrm{~L} / \mathrm{min}$. $\cdot 30 \mathrm{~L} / \mathrm{min}$.
Flow rates	10 (0+9 preset values)
Gases options	$\mathrm{O}_{2} \cdot \mathrm{AIR}$
Dial flowmeter accuracy	$\pm 10 \%$ read value or $\pm 0.5 \mathrm{~L} / \mathrm{min}$. ($\pm 0.2 \mathrm{~L} / \mathrm{min}$. for flows < than $1 \mathrm{~L} / \mathrm{min}$.) which of the two greater
Pressure reducer assy	double stage with shutter system
Flow setting data	1013 mbar $23{ }^{\circ} \mathrm{C}$
Inlet cylinder connections	UNI $11144 \cdot$ EN $850 \cdot$ NF-E 29-656 • BS 341-3 • DIN 477-1 • ISO 5145
Outlet connections	Nipple with double thread, interchangeable by the end user: M12x1.25 M. • 1/4" ISO 3253 M. 9/16" UNF EN 13544-2 M. • 1/4" ISO 3253 M. M12x1.25 M. • 9/16" UNF EN 13544-2 M.
Terminal unit (optional)	AFNOR NF-S 90-116 • UNI 9507
Supply pressure	$360 \div 550 \mathrm{kPa}$ (with cylinder pressure between 200 and 60 bar and constant flow of $40 \mathrm{~L} / \mathrm{min} .23{ }^{\circ} \mathrm{C}$)

